
LONGEST INCREASING SUBSEQUENCE

WHAT IS IT?

• The Longest Increasing Subsequence (LIS) is a problem in which you must
find the longest possible subsequence, where all element are ordered from
lowest to highest. There may be multiple answers with the same maximum
length

• For example, In the sequence [3, 4, 1, 6, 6, 5, 10, 2]
• The longest increasing subsequence has a length of 4, and is

[3, 4, 5, 10] or [3, 4, 6, 10]
(both of these sequences can be found by removing elements from the
original sequence, ie: the element order has not changed)

*There is a version of this problem called the longest nondecreasing
subsequence in which duplicates are allowed, however I will just cover strictly
increasing subsequences – ie: [3, 4, 6, 6, 10] is not allowed

OPTION 1: BRUTE FORCE

• We can calculate every subsequence, ignore all of those that are not strictly
increasing, and take the largest subsequence of what is left

• As a sequence of size n has 2n subsets, the time complexity is O(2n), which is
very slow and will not be fast enough for most competitive coding usage

OPTION 1: BRUTE FORCE

• For example: in the sequence [2,5,1,7]

• The subsequences are:
[2] [5] [1] [7]
[2,5] [2,1] [2,7] [5,1] [5,7] [1,7]
[2,5,1] [2,5,7] [2,1,7] [5,1,7]
[2,5,1,7]

OPTION 1: BRUTE FORCE

• For example: in the sequence [2,5,1,7]

• The increasing subsequences are:
[2] [5] [1] [7]
[2,5] [2,7] [5,7] [1,7]
[2,5,7]

And thus, the LIS is [2,5,7] and has a length of 3

OPTION 2: USE PREVIOUS LIS

• Store the LIS ending at every point, and use the LIS ending at every
element < n to calculate the LIS ending at n

• The LIS ending at element n is either just element n, or n added onto the LIS
ending at some element < n

• This uses 2 for loops, making the time complexity O(n2), which is better than
the previous option, however not optimal

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,1,1,1]

Arr[1] > Arr[0] 5 > 2
So LIS[1] = max(LIS[1], LIS[0]+1)
So LIS[1] = 1 + 1 = 2

LIS [1,2,1,1]

The LIS ending at every element is
instantiated as 1, as it will always be
>= to 1

The LIS ending at element 2 (Arr[1])
is either itself or itself with the LIS
ending at element 1

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,2,1,1]

Arr[2] < Arr[0] 1 <= 2
So we do nothing – as 1 < 2, 1 could not
Be added onto any LIS that ended at 2

LIS [1,2,1,1]

The LIS ending at element 3 (Arr[2])
is either itself or itself with the LIS
ending at element 1 or 2

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,2,1,1]

Arr[2] < Arr[1] 1 <= 5
So we do nothing

LIS [1,2,1,1]

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,2,1,1]

Arr[3] > Arr[0] 7 > 2
So LIS[3] = max(LIS[3], LIS[0]+1)
So LIS[3] = 1 + 1 = 2

LIS [1,2,1,2]

The LIS ending at element 4 (Arr[3])
is either itself or itself with the LIS
ending at element 1, 2 or 3

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,2,1,2]

Arr[3] > Arr[1] 7 > 5
So LIS[3] = max(LIS[3], LIS[1]+1)
So LIS[3] = 2 + 1 = 3

LIS [1,2,1,3]

OPTION 2: USE PREVIOUS LIS

• For example: in the sequence [2,5,1,7]

• Arr [2,5,1,7]
• LIS [1,2,1,3]

Arr[3] > Arr[2] 7 > 1
So LIS[3] = max(LIS[3], LIS[2]+1)
So LIS[3] = 3

LIS [1,2,1,3]
Thus, the LIS will be the largest
element in the LIS array, which is 3

OPTION 2: USE PREVIOUS LIS
#include <bits/stdc++.h>
using namespace std;

//the array of values, and the size of the array
int lis(int arr[], int n) {

int lis[n];

//Initialize all LIS values to 1
for (int i = 0; i < n; i++) {

lis[i] = 1;
}

for (int i = 1; i < n; i++) {
for (int k = 0; k < i; k++) {

if (arr[i] > arr[k]) {
lis[i] = max(lis[i], lis[k] + 1);

}
}

}

//returns the max element of the array lis
return *max_element(lis, lis + n);

}

int main() {
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Length of the LIS is " << lis(arr, n) << "\n";
return 0;

}

OPTION 3: ACTIVE SUBSEQUENCES

• We store the last number of all active Increasing Subsequences (IS) in an
array (tail[]) - (in the IS [1,4,5], tail[k] = 5)

• If the next number (arr[i]) is greater than any before it, we clone the largest
sequence and add the new element to it (but in practice, the element is just
stored in tail[m+1] where m was the entry of the last greatest number)

• If it is not the greatest, we find the smallest element >= to it, and replace that
element (tail[k]) with said number (arr[i]) – done through binary search

• This uses 1 for loop as well as n binary searches, making the time complexity
O(nlogn), which is optimal

• Binary search can be used, as every time a new sequence is created, its final
element is the largest element in tail[] (thus tail[] is always sorted smallest to
largest)

OPTION 3: ACTIVE SUBSEQUENCES

• Active subsequences are all the subsequences that could be used in the
optimal LIS, all different subsequence lengths

• For example: in [2,3,6,8…], the 2 subsequences of length 3 are [2,3,6] and
[2,3,8], however [2,3,6] is the active subsequence of length 3, as it is always
optimal to use the subsequence with smaller values (if the next number was
7, only the [2,3,6] subsequence could include it)

• There will always be at most 1 active sequence for each subsequence
length

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [2,0,0,0,0,0,0,0,0,0,0,0] length=1
Active sequences:
2

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [2,5,0,0,0,0,0,0,0,0,0,0] length=2
Active sequences:
2
2, 5

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,5,0,0,0,0,0,0,0,0,0,0] length=2
Active sequences:
2 1
2, 5

OPTION 3: ACTIVE SUBSEQUENCES

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,5,7,0,0,0,0,0,0,0,0,0] length=3
Active sequences:
1
2, 5
2, 5, 7

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,5,6,0,0,0,0,0,0,0,0,0] length=3
Active sequences:
1
2, 5
2, 5, 7 2, 5, 6

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,0,0,0,0,0,0,0,0,0] length=3
Active sequences:
1
2, 5 2, 3
2, 5, 6

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,9,0,0,0,0,0,0,0,0] length=4
Active sequences:
1
2, 3
2, 5, 6
2, 5, 6, 9

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,9,12,0,0,0,0,0,0,0] length=5
Active sequences:
1
2, 3
2, 5, 6
2, 5, 6, 9
2, 5, 6, 9, 12

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,9,10,0,0,0,0,0,0,0] length=5
Active sequences:
1
2, 3
2, 5, 6
2, 5, 6, 9
2, 5, 6, 9, 12 2, 5, 6, 9, 10

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,9,10,11,0,0,0,0,0,0] length=6
Active sequences:
1
2, 3
2, 5, 6
2, 5, 6, 9
2, 5, 6, 9, 10
2, 5, 6, 9, 10, 11

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6
Active sequences:
1
2, 3
2, 5, 6
2, 5, 6, 9 2, 5, 6, 8
2, 5, 6, 9, 10
2, 5, 6, 9, 10, 11

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6
Active sequences:
1
2, 3
2, 5, 6 2, 3, 6
2, 5, 6, 8
2, 5, 6, 9, 10
2, 5, 6, 9, 10, 11

As you can see here, when we replace the 6 in tail[2] for
6, what we are actually doing is adding a 6 to the Active
Subsequence of length 2 (so the new sequence is [2,3,6]
and not [2,5,6])

OPTION 3: ACTIVE SUBSEQUENCES

• For example: in the sequence [2,5,1,7,6,3,9,12,10,11,8,6]

• Arr [2,5,1,7,6,3,9,12,10,11,8,6]
• tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6
Active sequences:
1
2, 3
2, 3, 6
2, 5, 6, 8
2, 5, 6, 9, 10
2, 5, 6, 9, 10, 11

There are 6 active sequences, so the
LIS has a length of 6

As the algorithm (shown on the next slide) only
holds the last element of every active sequence,
you cannot reconstruct the LIS without changing
the algorithm

OPTION 3: ACTIVE SUBSEQUENCES
#include <bits/stdc++.h>
using namespace std;

int lis(int arr[], int n) {

int tail[n]; //holds the last element of lis sequences
int length = 1; //points to the next empty slot in tail

tail[0] = arr[0];
for (int i = 1; i < n; i++) {

//index of the first number >=arr[i] in the tails array
int index = lower_bound(tail, tail + length, arr[i]) - tail;

//if no numbers >=arr[i], add it to the tail array
if (index == length) {

tail[length] = arr[i];
length++;

} else { //change the number in the tails array to the smaller or equal arr[i]
tail[index] = arr[i];

}
}
return (n==0)? 0 : length; //return 0 if the array is empty (base case)

}

int main() {
int arr[] = { 2,5,1,7,6,3,9,12,10,11,8,6 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Length of the LIS is " << lis(arr, n) << "\n";
return 0;

}

EXAMPLE

• Example problem (Codeforce 486E - LIS of Sequence)
• Every number in a sequence can be put in 3 groups:
1) The number belongs to no LIS
2) The number belongs to some but not all LIS’s
3) The number belongs to all LIS’s

Given a sequence of numbers, print what group every
number of said sequence is in

Eg: [1,3,2,9,5,6]

The answer is 322133,
As the LIS is either
[1,3,5,6] or [1,2,5,6]

Solution Taken from https://codeforces.com/contest/486/submission/8657105

EXAMPLE SOLUTION

Problem tutorial: https://codeforces.com/blog/entry/14678

