LONGEST INCREASING SUBSEQUENCE

WHAT IS IT?

* The Longest Increasing Subsequence (LIS) is a problem in which you must
find the longest possible subsequence, where all element are ordered from
lowest to highest. There may be multiple answers with the same maximum

length
 For example, In the sequence [3,4, 1,6, 6,5, 10, 2]
* The longest increasing subsequence has a length of 4, and is

[3,4,5,10] or [3,4, 6, 10]
(both of these sequences can be found by removing elements from the
original sequence, ie: the element order has not changed)

*There is a version of this problem called the longest nondecreasing
subseqguence in which duplicates are allowed, however | will just cover strictly
increasing subsequences —ie: [3, 4, 6, 6, 10] is not allowed

,ﬂ

OPTION 1: BRUTE FORCE

« We can calculate every subsequence, ignore all of those that are not strictly
increasing, and take the largest subsequence of what is left

« AS a segquence of size n has 2" subsets, the time complexity is O(2"), which is
very slow and will not be fast enough for most competitive coding usage

=

" I

OPTION 1: BRUTE FORCE

* For example: in the sequence [2,5,1,7]

* The subsequences are:

2] [3] [1] [7]

2,5] [2,1] [2,7] [5.1] [5.7] [1.7]
2,5,1]1 [2,5,7] [2,1,7] [5.1,7]
2,5,1,7]

OPTION 1: BRUTE FORCE

* For example: in the sequence [2,5,1,7]

» The increasing subsequences are:
2] [5] [1] [7]

2,5] [2.7] [5.7] [1.7]

2,5,7]

And thus, the LIS is [2,5,7] and has a length of 3

OPTION 2: USE PREVIOUS LIS

« Store the LIS ending at every point, and use the LIS ending at every
element < n to calculate the LIS ending at n

« The LIS ending at element n is either just element n, or n added onto the LIS
ending at some element <n

* This uses 2 for loops, making the time complexity O(n?), which is better than
the previous option, however not optimal

OPTION 2: USE PREVIOUS LIS

* For example: in the sequence [2,5,1,7]

The LIS ending at every element is

o Arr[2,5,1,7] instantiated as 1, as it will always be
e LIS [1,1,1,1] >=to]
~ AI’I’[O] 2> 2 The LIS endi K=] t 2 (Arr[1])
e LIS ending at elemen 1
So LIS[T] = max(, LIS[O]+1) is either itself or itself with the LIS
SOLIS[1]=1+1=2 ending af element 1

LIS [1,2,1,1]

* For example: in the sequence [2,5,1,7]

o Arr[2,5,1,7]
« LIS[1,2,1,1]

< Arr[0] 1 <=2
Sowe do nothing—-as 1 <2, 1 could not

Be added onto any LIS that ended at 2

LIS [1,2,1,1]

OPTION 2: USE PREVIOUS LIS

The LIS ending at element 3 (Arr[2])
is either itself or itself with the LIS
ending at element 1 or 2

"~ OPTION 2: USE PREVIOUS LIS

* For example: in the sequence [2,5,1,7]

o Arr[2,5,1,7]
« LIS[1,2,1,1]

< Arr[1] 1 <=5
So we do nothing

LIS [1,2,1,1]

OPTION 2: USE PREVIOUS LIS

« For example: in the sequence [2,5,1,7]

o Arr[2,5,1,/]
o LIS [1,2,1,1]

> Arr[O] /=2 The LIS ending at el t 4 (Arr[3])
e endaing dr elemen r
So LIS[3] = max(, LIS[O]+1) is either itself or itself with the LIS
SoLIS[3]=1+1=2 ending at element 1,2 or 3

LIS [1,2,1,2]

OPTION 2: USE PREVIOUS LIS

« For example: in the sequence [2,5,1,7]

o Arr [2,5,1,/]
« LIS [1,2,1,7]

> Arr[1] />5
So LIS[3] = max(, LIS[1]+1)
SoLIS[3]=2+1=3

LIS [1,2,1,3]

B .
OPTION 2: USE PREVIOUS LIS

e vt

* For example: in the sequence [2,5,1,7]

o Arr[2,5,1,/]
o LIS [1,2,1,3]

> Arr[2] /> 1
So LIS[3] = max(, LIS[2]+1)
So LIS[3] =

Thus, the LIS will be the largest
LIS [1,2,1,3] element in the LIS array, which is 3

OPTION 2: USE PREVIOUS LIS

#include <bits/stdc++.h>
using namespace std;

//the array of values, and the size of the array
int lis(int arr([], int n) {

int lis[n];

//Initialize all LIS values to 1
for (inti=0;i<n;i++) {

lis[i] = 1;
}

for (inti=1;i<n;i++){
for (int k = 0; k <i; k++) {
if (arr[i] > arr[k]) {
lis[i] = max(lis[i], lis[k] + 1);

}
}

//returns the max element of the array lis
return *max_element(lis, lis + n);

int main() {
int arr[] ={10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr) / sizeof(arr[0]);
cout <<"Length of the LIS is " << lis(arr, n) <<"\n";
return O;

A

OPTION 3: ACTIVE SUBSEQUENCES

« We store the last number of all active Increasing Subseqguences (IS) in an
array (tail[]) - (in the IS [1,4,5], tail[k] = 5)

* If the next number (arr[i]) is greater than any before it, we clone the largest
sequence and add the new element to it (but in practice, the element is just
stored in tail[m+1] where m was the entry of the last greatest number)

« If it is not the greatest, we find the smallest element >= 1o it, and replace that
element (tail[k]) with said number (arr[i]) — done through binary search

 This uses 1 for loop as well as n binary searches, making the time complexity
O(nlogn), which is optimal

« Binary search can be used, as every time a new sequence is created, its final
element is the largest element in tail[] (thus tail[] is always sorted smallest 1o
largest)

OPTION 3: ACTIVE SUBSEQUENCES

« Active subsequences are all the subsequences that could be used in the
optimal LIS, all different subsequence lengths

« For example:in [2,3,6,8...], the 2 subsequences of length 3 are [2,3,6] and
[2,3.8], however [2,3,6] is the active subsequence of length 3, as it is always
optimal to use the subsequence with smaller values (if the next number was
/., only the [2,3,6] subsequence could include it)

» There will always be at most 1 active sequence for each subsequence
length

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
e Arr[2,5,1,7,6,3,9,12,10,11,8,6]
- tail [2,0,0,0,0,0,0,0,0,0,0,0] length=1

Active sequences:
2

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
« Arr [2,5,1,7,6,3,9,12,10,11,8,6]

- tail [2,5,0,0,0,0,0,0,0,0,0,0] length=2

Active sequences:

2

2,5

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
« Arr[2,5,1,7,6,3,9,12,10,11,8,6]

- tail [1,5,0,0,0,0,0,0,0,0,0,0] length=2

Active sequences:

2 1

2,5

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

« Arr [2,5,1,/,6,3,9,12,10,11,8,6]

- tail [1,5,7,0,0,0,0,0,0,0,0,0] length=3
Active sequences:

]

2,5

2,57

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

« Arr[2,5,1,7,6,3,9,12,10,11,8,6]

- tail [1,5,6,0,0,0,0,0,0,0,0,0] length=3
Active sequences:

]

2,5

25—+ 2,5, 6

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

« Arr[2,5,1,7,6,3,9,12,10,11,8,6]

- tail [1,3,6,0,0,0,0,0,0,0,0,0] length=3
Active sequences:

]

25 2,3

2,56

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

« Arr[2,5,1,7,6,3,7,12,10,11,8,6]

e tail [1,3,6,9,0,0,0,0,0,0,0,0] length=4
Active sequences:

]

2,3

2,56

2,5 6,9

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

o Arr[2,5,1,7,6,3,9,17,10,11,8,6]

« tail [1,3,6,9,12,0,0,0,0,0,0,0] length=5
Active sequences:

]

2,3

2,56

2,5 6,9

2,5 6,9, 12

"OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
« Arr[2,5,1,7,6,3,9,12,10,11,8,6]
e tail [1,3,6,9,10,0,0,0,0,0,0,0] length=5

Active sequences:

, 6
, 6,9
6912 2,5,6,9,10

ISIICEI SIS
A O O W

"OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

o Arr[2,5,1,7,6,3,9,12,10,11,8,6]

e tail [1,3,6,9,10,11,0,0,0,0,0,0] length=6
Active sequences:

]

2,3

2,56

2,5 6,9

2,5,6,9,10

2,5 6,9,10, 11

"OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
« Arr[2,5,1,7,6,3,9,12,10,11,8,6]
e tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6

Active sequences:

-9 2,5,6,8
, 6,9, 10
,6,9,10, 11

DR NN -
oo dnonWw
o O O O

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]

« Arr[2,5,1,7,6,3,9,12,10,11,8,4]

e tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6

Active sequences:

]

2,3 As you can see here, when we replace the 6 in tail[2] for

2 5 46 2 3 6 6, what we are actually doing is adding a é to the Active
Subsequence of length 2 (so the new sequence is [2,3,6]

2,5, 6,8 and not [2,5,6])

2,56,9,10
2,56,9,10, 11

OPTION 3: ACTIVE SUBSEQUENCES

* For example: in the sequence [2,5,1,7,6,3.9,12,10,11,8,6]
« Arr[2,5,1,7,6,3,9,12,10,11,8,6]
e tail [1,3,6,8,10,11,0,0,0,0,0,0] length=6
Active sequences:
1 There are 6 active sequences, so the
LIS has a length of 6
2,3
2,3, 6 As the algorithm (shown on the next slide) only
2.5 6,8 holds the last element of every active sequence,
you cannot reconstruct the LIS without changing
2,5,6,9,10 the algorithm

2,56,9,10, 11

OPTION 3: ACTIVE SUBSEQUENCES

#include <bits/stdc++.h>
using namespace std;

int lis(int arr[], int n) { int main() {

intarr[] ={2,5,1,7,6,3,9,12,10,11,8,6 };

int n = sizeof(arr) / sizeof(arr[0]);

cout <<"Length of the LIS is " << lis(arr, n) <<"\n";
tail[0] = arr[O]; return O;

for (inti=1;i<n;i++) { }

int tail[n]; //holds the last element of lis sequences
int length = 1; //points to the next empty slot in tail

//index of the first number >=arr(i] in the tails array
int index = lower_bound(tail, tail + length, arr[i]) - tail;

//if no numbers >=arr[i], add it to the tail array
if (index == length) {

tail[length] = arrli];

length++;

} else { //change the number in the tails array to the smaller or equal arr(i]
tail[index] = arr|i];
}

return (Nn==0)2 0 : length; //return O if the array is empty (base case)

/’ﬂ
EXAMPLE

« Example problem (Codeforce 486E - LIS of Sequence)
« Every number in a sequence can be putin 3 groups:
1) The number belongs to no LIS

2) The number belongs to some but not all LIS’s Eg: [1.3.2,9.5,6]

3) The number belongs to all LIS’s The answer is 322133,
As the LIS is either
[1,3,5,6] or [1,2,5,6]

Given a sequence of numbers, print what group every
number of said sequence is in

EXAMPLE SOLUTION

1 #include <bits/stdc++.h> 30
2 using namespace std; 31 fill(MAX, MAX + n, -1);
3 32 for(int i = n - 1; i >= 0; i--)
4 int a[100002], dp[100001], x[100005], out[100005], MAX[100005], cnt[100005]; 6 {
) 34 : if(dp[i] == ans)
6 int mainQ) 35« {
- { 36 MAX[ans] = max(MAX[ans], a[i]);
8 int n; 37 © 1 out[i] = 2;
9 Gl e L 38 i i continue;
10 ;for (int i =0; i < n; i++) 39 g }
- | = cini>>1dfil; 40 . int x = MAX[dp[i] + 11;
12 e G G 41 L if(x == -1 || x <= a[i])
13 for(int i = 0; i < n; i++) 42 § : out[i] = 1;
14 « {
; . . 43 ; else
15 ; int 1o = -1, hi = ans; 44 5 : out[i] = 2;
1?7 g thle(lo <hi - 1) 45 g ;if(out[i] — 2)
18 int mid = (lo + hi) / 2; 12 } . MAX[dp[i]] = max(MAX[dp[i]], a[il);
— § % ;If(x[mlf] ?=.a[1]) 48 for(int i = 0; i < n; i++)
20 5 : : hi = mid; : . .
21 P else 49 i ifCout[i] - 2)
22 1 lo = midg; 30 |1 cntldp[i]le;
28 g } 51 for(lnt i=0; 1<n; i++)
24 § dp[i] = hi + 1; 52 g Eif(out[i] == 2 && cnt[dp[i]] == 1)
25 . if(hi = ans) 33 1 cout << 35
26 - x[ans++] = a[il; 54 § else
27 else 55 cout << out[i];
28 . x[hi] = min(x[hi], a[iD); 56 cout << endl;
29 } 57 return 0;
30 58 1}

Solution Taken from https://codeforces.com/contest/486/subbmission/8657105
Problem tutorial: https://codeforces.com/blog/entry/14678

